Table 4-29. Comparison of safety system alternatives (primarily confinement/containment options) | System | Technical
feasibility | Estimated
Pr
Capital ^b | costs
oductio
Loss ^c | | Benefit
person-rem
averted ^d
(3% melt) | Cost/benefit
(\$ per
person-rem
averted) | e Timing (months to complete) | |-----------------------------------|----------------------------|---|---------------------------------------|-----------|--|---|-------------------------------| | Existing confinement (ref) system | Demonstrated
and proven | Installed | None | Installed | | Reference | Installed | | Remote storage system | Demonstrated | 250 | 25 | 275 | 445 | 620,000 | 24 | | Low temperature adsorption system | Not
demonstrated | 90 | 50 | 140 | 460 | 300,000 | 36 | | Tall stack | Demonstrated | 50 | 15 | 65 | 175 | 370,000 | 15 | | Internal containment | Questionable | 250 | 150 | 400 | 455 | 880,000 | 48 | | Leaktight
dome | Questionable | 850 | 50 | 900 | 450 | 2,000,000 | 36 | a_{MM} - millions of dollars. eThe expected cost benefit considering the probability of the accident is at least two million times greater than the values listed here. bRough estimates escalated to 3Q FY 1988 construction midpoint. cRough cost of production lost during construction at \$150,000 per reactor-day. dAssumes hypothetical accident (3-percent melt) occurs. Dose within 80-kilometer radius from reactor (2500 megawatts accident). 50 percent meteorology. Benefit = (dose with existing confinement system - dose with alternative system) = person-rem averted.